p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.260C23, (C4×D4).23C4, (C4×Q8).22C4, C4.62(C8○D4), C4⋊C8.354C22, (C4×M4(2))⋊31C2, (C2×C4).641C24, (C4×C8).325C22, (C2×C8).474C23, C42.204(C2×C4), C42.12C4⋊46C2, C8⋊C4.152C22, C4.16(C42⋊C2), C22⋊C8.228C22, C23.100(C22×C4), (C22×C4).912C23, (C22×C8).508C22, C22.169(C23×C4), C4○2(C42.6C22), C4○2(C42.7C22), C42.7C22⋊33C2, C42.6C22⋊36C2, (C2×C42).1107C22, C22.4(C42⋊C2), C42⋊C2.290C22, (C2×M4(2)).343C22, C42○(C42.7C22), C42○(C42.6C22), (C2×C4×C8)⋊17C2, C2.11(C2×C8○D4), C4⋊C4.217(C2×C4), (C4×C4○D4).11C2, C4.292(C2×C4○D4), (C2×D4).227(C2×C4), C22⋊C4.68(C2×C4), (C2×Q8).205(C2×C4), C4○2((C22×C8)⋊C2), (C2×C4).679(C4○D4), (C22×C4).335(C2×C4), (C2×C4).257(C22×C4), C2.41(C2×C42⋊C2), (C22×C8)⋊C2.20C2, C42○((C22×C8)⋊C2), (C2×C4○D4).280C22, SmallGroup(128,1654)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.260C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, eae=ab2, bc=cb, bd=db, be=eb, dcd=a2c, ce=ec, ede=b2d >
Subgroups: 268 in 200 conjugacy classes, 136 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22×C8, C2×M4(2), C2×C4○D4, C2×C4×C8, C4×M4(2), (C22×C8)⋊C2, C42.6C22, C42.12C4, C42.7C22, C4×C4○D4, C42.260C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C8○D4, C23×C4, C2×C4○D4, C2×C42⋊C2, C2×C8○D4, C42.260C23
(1 33 55 18)(2 19 56 34)(3 35 49 20)(4 21 50 36)(5 37 51 22)(6 23 52 38)(7 39 53 24)(8 17 54 40)(9 48 28 62)(10 63 29 41)(11 42 30 64)(12 57 31 43)(13 44 32 58)(14 59 25 45)(15 46 26 60)(16 61 27 47)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 10)(2 30)(3 12)(4 32)(5 14)(6 26)(7 16)(8 28)(9 54)(11 56)(13 50)(15 52)(17 62)(18 41)(19 64)(20 43)(21 58)(22 45)(23 60)(24 47)(25 51)(27 53)(29 55)(31 49)(33 63)(34 42)(35 57)(36 44)(37 59)(38 46)(39 61)(40 48)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 61)(34 62)(35 63)(36 64)(37 57)(38 58)(39 59)(40 60)
G:=sub<Sym(64)| (1,33,55,18)(2,19,56,34)(3,35,49,20)(4,21,50,36)(5,37,51,22)(6,23,52,38)(7,39,53,24)(8,17,54,40)(9,48,28,62)(10,63,29,41)(11,42,30,64)(12,57,31,43)(13,44,32,58)(14,59,25,45)(15,46,26,60)(16,61,27,47), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10)(2,30)(3,12)(4,32)(5,14)(6,26)(7,16)(8,28)(9,54)(11,56)(13,50)(15,52)(17,62)(18,41)(19,64)(20,43)(21,58)(22,45)(23,60)(24,47)(25,51)(27,53)(29,55)(31,49)(33,63)(34,42)(35,57)(36,44)(37,59)(38,46)(39,61)(40,48), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60)>;
G:=Group( (1,33,55,18)(2,19,56,34)(3,35,49,20)(4,21,50,36)(5,37,51,22)(6,23,52,38)(7,39,53,24)(8,17,54,40)(9,48,28,62)(10,63,29,41)(11,42,30,64)(12,57,31,43)(13,44,32,58)(14,59,25,45)(15,46,26,60)(16,61,27,47), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,10)(2,30)(3,12)(4,32)(5,14)(6,26)(7,16)(8,28)(9,54)(11,56)(13,50)(15,52)(17,62)(18,41)(19,64)(20,43)(21,58)(22,45)(23,60)(24,47)(25,51)(27,53)(29,55)(31,49)(33,63)(34,42)(35,57)(36,44)(37,59)(38,46)(39,61)(40,48), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,61)(34,62)(35,63)(36,64)(37,57)(38,58)(39,59)(40,60) );
G=PermutationGroup([[(1,33,55,18),(2,19,56,34),(3,35,49,20),(4,21,50,36),(5,37,51,22),(6,23,52,38),(7,39,53,24),(8,17,54,40),(9,48,28,62),(10,63,29,41),(11,42,30,64),(12,57,31,43),(13,44,32,58),(14,59,25,45),(15,46,26,60),(16,61,27,47)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,10),(2,30),(3,12),(4,32),(5,14),(6,26),(7,16),(8,28),(9,54),(11,56),(13,50),(15,52),(17,62),(18,41),(19,64),(20,43),(21,58),(22,45),(23,60),(24,47),(25,51),(27,53),(29,55),(31,49),(33,63),(34,42),(35,57),(36,44),(37,59),(38,46),(39,61),(40,48)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,61),(34,62),(35,63),(36,64),(37,57),(38,58),(39,59),(40,60)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4L | 4M | ··· | 4R | 4S | ··· | 4X | 8A | ··· | 8P | 8Q | ··· | 8X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4○D4 | C8○D4 |
kernel | C42.260C23 | C2×C4×C8 | C4×M4(2) | (C22×C8)⋊C2 | C42.6C22 | C42.12C4 | C42.7C22 | C4×C4○D4 | C4×D4 | C4×Q8 | C2×C4 | C4 |
# reps | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 12 | 4 | 8 | 16 |
Matrix representation of C42.260C23 ►in GL4(𝔽17) generated by
0 | 16 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 13 | 0 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 13 |
0 | 2 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 9 |
0 | 4 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 |
0 | 0 | 4 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,0,13,0,0,4,0],[4,0,0,0,0,4,0,0,0,0,13,0,0,0,0,13],[0,2,0,0,2,0,0,0,0,0,9,0,0,0,0,9],[0,13,0,0,4,0,0,0,0,0,0,4,0,0,13,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C42.260C23 in GAP, Magma, Sage, TeX
C_4^2._{260}C_2^3
% in TeX
G:=Group("C4^2.260C2^3");
// GroupNames label
G:=SmallGroup(128,1654);
// by ID
G=gap.SmallGroup(128,1654);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,100,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations